Question 1. Consider a current carrying wire (current 7) in the shape of a circle. Note that as the current progresses along the wire, the direction of j (current density) changes in an exact manner, while the current I remain unaffected. The agent that is essentially responsible for is

- (a) source of emf
- (b) electric field produced by charges accumulated on the surface of wire
- (c) the charges just behind a given segment of wire which push them just the right way by repulsion
- (d) the charges ahead

Solution: (b)

Key concept: Current per unit area (taken normal to the current), I/A, is called current density and is denoted by \vec{J} .

The SI unit of the current density are A/m^2 . The current density is also directed along E and which is also a vector quantity and the relationship is given by

$$\vec{J} = \sigma \vec{E} = \frac{\vec{E}}{\rho}$$

where σ = conductivity and ρ = resistivity or specific resistance of the substance.

The \vec{J} changes due to the electric field produced by charges accumulated on the surface of wire.